The three phases of digital transformation

In recent years, enterprises in every industry sector have been embarking on a digital transformation journey in one way or another. Business enterprises are taking advantage of the proliferation of digital technologies to define new business models or to improve business productivity with existing models. By Geng Lin, Chief Technology Officer, F5 Networks.

  • 4 years ago Posted in

Key digital propellers such as the Internet (as a ubiquitous reachability platform), applications and open source proficiency (as a skill set platform), cloud (as a pervasive computing and data platform), and, of late, AI/ML (as an insight discovery platform) help enterprise businesses to improve business productivity and customer experiences.


While the pace of digital transformation varies based on the business and the sector it is in, overall, the journey of digital transformation has three stages.

The steady rise in leveraging application, business telemetry and data analytics enables organizations to scale digitally. Adopting an agile development methodology to quickly iterate modifications has shortened the lifecycle of “code to users.” In digital enterprises, the “code” embodies the business flow and the speed of change in “code to users” represents business agility. In this new era of digital economy, applications have become the life blood of the global economy. Every business is becoming an application business and every industry is becoming application-centric industry. 

As IT infrastructure automation and application-driven DevOps processes have been largely established across the industry, we envision that a layer of distributed application services that unifies application infrastructure, telemetry, and analytics services is emerging. The scale, agility, and complexity of digital enterprises demands their applications to have self-awareness and the ability to automatically adjust to operating and business conditions. This will breed a new generation of application services to collect, analyze, and act on the telemetry generated by apps and their infrastructure. These capabilities create new business uses. End-to-end instrumentation from code to customer will enable application services to emit that telemetry and act on insights produced through AI-driven analytics. These distributed application services will help application owners to improve application performance, security, operability, and adaptability without significant development effort. 

By Nathan Marlor, Global Head of Data and AI, Version 1.
By Daniel Bailey, Senior Vice President and Regional Sales Leader EMEA at Genesys.
By Jim Cassens, CEO, Perforce.
By Matt Middleton-Leal, Managing Director Northern Europe, Qualys.
By Andy Mills, VP of EMEA, Cequence Security.
By Paul Birkett, VP Strategic Portfolio Management at Ricoh Europe.
By Liz Centoni, Chief Customer Experience Officer, Cisco.